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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Reggeized differential cross sections for fermion- 
exchange processes in the covariant formalism 

T. M. AYE 
Physics Department, Imperial College, London SW7, UK 
M S .  received 11 th May 1971 

Abstract. A scheme developed by Scadron and Gault for calculating reggeized 
spin-averaged differential cross sections for boson exchange is extended, via 
s channel helicity vertices, to backward processes involving fermion Regge 
pole exchanges including those initiated by photons. 

Using the higher spin propagator formalism of Scadron (1968), a method of 
reggeizing invariant amplitudes has been developed by Jones and Scadron (1968a, 
1968b), Gault (1969) and Gault et al. (1970). Within this formalism, Gault and 
Scadron (1970) were able to develop a scheme for calculating reggeized spin-averaged 
differential cross sections for boson-exchange processes. 

In  this paper we perform similar but more complicated calculations for processes 
involving fermion Regge poles, where factorization is not automatic, as for the boson 
caset, and Gribov parity doubling of fermion trajectories is also involved (Gribov 1963, 
Gribov et al. 1964). However, the residue functions in each of the s channel helicity 
amplitudes do factorize asymptotically ; this makes it possible to construct many cross 
sections from a few vertex traces, which are calculated and listed in table 2. Backward 
photonic processes are also considered, incorporating gauge invariance (Appendix 1). 

In the covariant formalism developed by Jones, Scadron and Gaunt, the partial 
wave expansion in the U channel is reggeized by the prescription 

C J g J ( . 2 J  -+ (T)cr(v 'u) t  =(dU) (1) 
J -+ 4 d U )  

coupling constants + Regge residue functions of l/u, where [I is the signature 
factor and 

With the kinematics defined in figure 1 (Scadron 1968) 

A' = &(p'+q)  
A = H P + d  
K = (P -d)  = (P' -4)  
J = j + &  ( j  integral) 

Figure 1. 

t For references see Gell-Mann (1962), Gribov and Pomeranchuck (1962) and Gault 
and Scadron (1970). 
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the spin.averaged differential cross section in the asymptotic region is given by 

where 
= %jj49’o;aJ(R’, A; 

Here 9, ;aJ is the contracted spin J fermion propagator numerator, Piif and Yff 
are the products of the projection operators for the initial and final particles in the 
U channel, and the V are the reduced Regge couplings displayed in table 1. 

Table 1. Reduced Regge couplings (BFF) 

%+CO, $ , j + & )  (g) 
q a v + ( I ,  $ , j + $ )  (giguv +gzRuYv +gAaAv)  
q a u + ( O ,  t , j + i )  (gig=, +gzAaAd 
%FI,+ IZZW”(1,  Q, j + 3)  

abnormal couplings : 

(giga,ggu,v +gzgalwyvAa2 +gogulda2Av 
+g,gwvAu,Aae +gsyvAa,AuzAv. + g J  u J  0: 

g + Y5f 

d v )  

(see Appendix 1 for photonic couplings). 

As the partial-wave amplitudes in the U channel satisfy the McDowell (1969) 
symmetry rule 

T$- 1 : d d U )  = - G T l , 2 (  - 44 (3) 
where the subscripts stand for I = JI. +, the Regge pole contribution of the Gribov 
parity partner must also be included in the A! function. Therefore we write 

dl2 = .I+ +d- (4) 
where A+ and d- are the A! functions for the exchange of the normal parity Regge 
pole and its parity partner, the abnormal parity Regge pole, respectively. Then the 
cross section becomes 

( 5  1 = I +  + + I -  - + I +  - + I -  + 
where 

If + = Tr(d j i+P , i . d - f , i ,+Bj t j )  

etc, in which the term I - -  can be obtained using equation (3). At this point one 
should note that the trace does not break up into two parts as in the case of boson- 
exchange processes (Gault and Scadron 1970), and thus factorization is not 
automatically satisfied. But in the following pages we will show that factorization is 
in fact satisfied in asymptopia. 

Now, it can easily be shown that the terms containing A! functions of the same 
normality, that is, I +  + and I - - ,  contribute to leading order, whereas the interference 
terms I+  - and I -  +, contributing one order lower than the leading order, may be 
neglected in the asymptotic region. 

Since direct trace calculations are rather clumsy and become extremely 
tedious for higher-spin processes, we instead write the T matrix in s channel helicity 

5A 
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which, to leading order, can be written as 

We now show that each term in the parenthesis of equation (16) decouples, 
asymptotically and near the backward direction, from the fermion trace part, that is, 
the term cy5 (y.K+ M )  U, and the residue function factorizes for each helicity ampli- 
tude. 

Since no y matrices are involved in the first and the third terms of the parenthesis, 
they clearly decouple from the fermion trace part for each explicit helicity amplitude. 
Thus, for these two terms, we only have to calculate the contributions of the fermion 
trace part which are essentially the same as in the ~ T N  case before. The  only differ- 
ence is the sign factor coming from the presence of one y5 between the spinors. 

The  contributions are 

which clearly gives the relation 

Now for the second term, consider the part y. ,’*(c“‘)(q’)u‘A)‘(p) for each helicity 
state of the polarization vector. Then we find in the asymptotic region that (Appen- 
dix2) 

r̂,e’*‘o’(4’)u‘A’(p) = Y.4’ -T l p ( p )  
P 

while 

t We use the relations: (y.I?+M)y.I? = (y.Z?+M)M and (y.p -m)u(p) = 0 for equa- 
tion (19) and the definition U+ = u1 +iaz  for equation (20). 
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Thus we have 
~ . ~ ’ * ( - ) ( p ’ ) u ( l / 2 ) ( p )  1/2~&-1‘2)(p) = id2&/2)(p) 

(P) - 0 
Y,E’*(+) ( p ’ ) u ( - y p )  - 0 

Y.€ ’~ ( - ) (p ’ )u ( - l / 2 ) (p )  1/2u(112)(p) = i2/2u(-1/2)(p) (21) 

y*E’*(- ’ (p ’ )u ‘1 ’2 ’  

where equation (18) has been used. 
Equations (19) and (21) clearly show that not only the first and the third but also 

the second term in equation (16) decouples from the fermion trace part and thus 
exhibits factorization of the Regge residue for each helicity amplitude. 

From equations (16), (17), (19) and (21), the final results can be written as 

T g J . l / Z ; l / Z  = TgJ,-1/2;-112 = iT;,l/Z;.-lm = i T L / 2 : 1 , 2  

and thus the contribution 

which can be checked by direct trace calculation. 

equation (12), asymptotically, in the form 
From the above two examples, it is clear that in general one could write down 

T{i.lJ N {A){B)T.’ (24) 
where {A) and {I?} are the decoupled Regge residue functions or the helicity vertex 
functions for each vertex (Jacob and Wick 1959, Gault and Jones 1971). 

The  contribution to the cross section is then 

Thus the reggeized spin-averaged differential cross section for the exchange of a 
given fermion trajectory can simply be written down as 
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where the second term is the contribution of the opposite parity partner? and the 
square brackets are those of equation (25). 

The  s channel helicity form of the vertex traces to leading order have been cal- 
culated for different vertices and the 'residue functions' within the square brackets 
in equation (26) are listed in table 2. 

Table 2. Vertex traces (s helicity form) 

Vertex Trace 
1 

2m - lg!2 

For example, the Nu exchange contribution to the cross section of backward 
photoproduction process, yp -+ n+n ,  is 

I n  all the above calculations we have not used any symmetry restrictions to the 
vertex coupling functions except parity (and of course gauge invariance for photon 
vertices). Other restrictions such as G or C parity and statistics do not arise in our 
case. However, one could easily generalize the present technique to theories with 
higher symmetries, for example, U(6)@U(6), and the resulting relations among the 
residue functions could be used to reduce some of the free parameters of a model in 
checking against experiments. Work on this problem is in progress in this department. 

t The residue functions obey the MacDowell symmetry relation: Igz/(u)l = I f (  - .\/U)]. 
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Appendix 1. Photon vertices 
Al .  1. Gauge invariance 

The A function for processes involving one photon of momentum k ,  (k2 = 0), 
can be written as (Gault et al. 1970, Jones and Scadron 1969 and Bardeen and Wu-ki 
Tung 1968) 

Jv  = &4,2,i (AI) 
i 

where the Ai are invariant amplitudes free of kinematic singularities (KSF) and zer_os 
(KZF) in s and U the ZVi are linear combinations of covariants like A', A and K,  
and j V  satisfies the gauge condition j v k , ,  = 2 v k v  = 0. 

Gauge invariance is guaranteed if we write AV as A, = &,,, 3'v,.v, where gVY., is 
the gauge projection operator defined by (Jones and Scadron 1969, Bardeen and 

- * 

Wu-ki Tung 1968) . .  

which unfortunately introduces kinematic zeros into the invariant amplitudes (at 
k.A = 0). A way out of this situation is to regularize the amplitudes by first of all 
forming all possible less singular combinations and then multiplying by a factor of 
( k A )  (Jones and Scadron 1969, Bardeen and Wu-ki Tung 1968). 

In  our case, the & function can be written as 

&-,, = '%'(A') : 9"(R) : @,,(A) (A-3)  
yhere the photon vertex is gauge invariant, that is, @,,(A)k, = 0 with 
%?,,(A) = %?,,.(A) g,,,.,. We now consider the guage invariant forms of particular photon 
vertices. 

AI .2. Photon-nucleon Regge vertex 
For normal exchange, the gauge invariant vertex is simply 

where 

and 

-4,y.k' 
k'.R 

y', = 52,,qJU' = yu -  --I 

A,' = 3',,~AU~ = 0 .  

Since (Scadron 1968) k'.R = $(m2 - M 2 )  and y.k' -+ (m-  M ) t ,  the linear combinations 

t We use the relations: (y.i?+IM)y.K = (y.l?+IM)M and (yep-m)u(p) = 0 €or equa- 
(M-m)gua'+y,'A, = (M-m)gua+y,A, @"uCc(l) 

tion (19) and the definition v*  = u1 +iaz  €or equation (20). 
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and 
(.W+m)y,‘h, = (M+m)yuA,-4R,h, = gLLa(’) 

are free of kinematic singularities. 
The  regularized couplings are thus given by 

@,(y, &, j+&)  = (81~uu l (1 )+~2~u ,1 (2 )A,z  ... A,, (A.5) 
where 2 are (KSF) in U. 

A1.3. Photon-N* Regge aertex 
Normal exchange leads to the covariants g&v’gBlu, yv’RBZ‘gBIU, gUy’ABl’ABp‘ and 

and ~~ 

hv‘y.k 4.hv ’ 
- Yv- Yv’ = yv- - - 

(m‘ + M )  k . h ’  

where the relations (Scadron 1968) K.h‘ = 
used. 

- M 2 )  and y .k  -+ (m’ - M )  have been 

Thus the linear combinations 

Appendix 2. s channel helicity amplitudes 

for the nN backward scattering can be written as (equation (12)) 
The  s channel helicity amplitudes (Jacob and Wick 1959, Gault and Jones 1971) 

T A T  : A  J .$h’)(p’)&J U (22) (P> (B.1) 

where we t akep  along 2,, q along -^e3, p’ at an angle Os(+ = 0) with respect to  8, 
and q‘ at (n - e,)(+ = v )  with respect to ^e3 (see figure 2). 
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I 
I 9\' \ I 

i 0, 

Figure 2. 

The Dirac spinors are given by 

2m E + m  

2m m 
where 

a n d p  = ]PI, h = 2X. 
I n  the Pauli representation, y5 = yoy Iy2y3 ,  y = yo(iy,)a, and 4+y54 = 0, 

I n  the case of the process TN -+ Np,, equation (12) becomes 
rod = d. 

Ti,,Aj ;>, N ~ ' " ' ( p ' ) ~ p J ~ , ' * ( a " )  (4 )U'"'(P) 

where the polarization vector for spin 1 particle is given by 

1 
cU' (0 ) (q f )  = - ( 4 ' ;  w' sin 0,, 0, -LO' cos 0,) 

~ , ' ( * ) ( q ' )  = + & ( O ;  cos os, T i, sin O s ) ,  

Pf" 
and 

For the process nN + N,*T, the amplitude is 

with 
u p ( p )  = 2 (1; 4, Y ,  SI$, h ) E p y p ) U ( s ' ( p )  

r , s  

where (1,&, Y, s/3/2, A) are the Clebsch-Gordon coefficients and ep and U are the usual 
spin 1 polarization vector and Dirac spinor, respectively (Scadron 1968). 
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